6x^2-14x+2=0

Simple and best practice solution for 6x^2-14x+2=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x^2-14x+2=0 equation:


Simplifying
6x2 + -14x + 2 = 0

Reorder the terms:
2 + -14x + 6x2 = 0

Solving
2 + -14x + 6x2 = 0

Solving for variable 'x'.

Factor out the Greatest Common Factor (GCF), '2'.
2(1 + -7x + 3x2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(1 + -7x + 3x2)' equal to zero and attempt to solve: Simplifying 1 + -7x + 3x2 = 0 Solving 1 + -7x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 0.3333333333 + -2.333333333x + x2 = 0 Move the constant term to the right: Add '-0.3333333333' to each side of the equation. 0.3333333333 + -2.333333333x + -0.3333333333 + x2 = 0 + -0.3333333333 Reorder the terms: 0.3333333333 + -0.3333333333 + -2.333333333x + x2 = 0 + -0.3333333333 Combine like terms: 0.3333333333 + -0.3333333333 = 0.0000000000 0.0000000000 + -2.333333333x + x2 = 0 + -0.3333333333 -2.333333333x + x2 = 0 + -0.3333333333 Combine like terms: 0 + -0.3333333333 = -0.3333333333 -2.333333333x + x2 = -0.3333333333 The x term is -2.333333333x. Take half its coefficient (-1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. -2.333333333x + 1.361111112 + x2 = -0.3333333333 + 1.361111112 Reorder the terms: 1.361111112 + -2.333333333x + x2 = -0.3333333333 + 1.361111112 Combine like terms: -0.3333333333 + 1.361111112 = 1.0277777787 1.361111112 + -2.333333333x + x2 = 1.0277777787 Factor a perfect square on the left side: (x + -1.166666667)(x + -1.166666667) = 1.0277777787 Calculate the square root of the right side: 1.013793756 Break this problem into two subproblems by setting (x + -1.166666667) equal to 1.013793756 and -1.013793756.

Subproblem 1

x + -1.166666667 = 1.013793756 Simplifying x + -1.166666667 = 1.013793756 Reorder the terms: -1.166666667 + x = 1.013793756 Solving -1.166666667 + x = 1.013793756 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + x = 1.013793756 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + x = 1.013793756 + 1.166666667 x = 1.013793756 + 1.166666667 Combine like terms: 1.013793756 + 1.166666667 = 2.180460423 x = 2.180460423 Simplifying x = 2.180460423

Subproblem 2

x + -1.166666667 = -1.013793756 Simplifying x + -1.166666667 = -1.013793756 Reorder the terms: -1.166666667 + x = -1.013793756 Solving -1.166666667 + x = -1.013793756 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + x = -1.013793756 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + x = -1.013793756 + 1.166666667 x = -1.013793756 + 1.166666667 Combine like terms: -1.013793756 + 1.166666667 = 0.152872911 x = 0.152872911 Simplifying x = 0.152872911

Solution

The solution to the problem is based on the solutions from the subproblems. x = {2.180460423, 0.152872911}

Solution

x = {2.180460423, 0.152872911}

See similar equations:

| -2(4x-5)+4=-8x+14 | | 2x-(-5x+14)=2 | | f(x)=2x+12x+16 | | 40(2x-1)=8(x+4)+3 | | .4x=.3y | | -3(3x-4)+7=-9x+19 | | 6(y+7)+y=4(y+2)+7 | | 4y=3x-15 | | 2(4s+3)=46 | | 3y=4x-20 | | -910x=72 | | -3x+7=2x-13 | | -13-4x=(-1) | | -7/9x=11/6 | | 2.1x-14.67=3.6 | | 4x^2-32=-24x | | 28+10a-2a^2=0 | | 4-x^2=mod(2x-1) | | x^2+12x-24=8x-3 | | 42L+18L^2-2L^3=0 | | x^2-7x-8=10 | | 15y-12+12y=10 | | 2xcos(x)=0.8 | | 2x^2-10=-4x | | 28+(x+79)=245 | | 2(3.5-.5y)+y=7 | | 6x+8-10x=4x-10 | | h(t)=-16t^2+24t+72 | | x^2+y^2+10x-5y-32=0 | | (+8)+(-5)= | | 2b+12=3b+3 | | (2+x)(7-3x)=(5-4x)(13-x) |

Equations solver categories